

Deterministic Transaction Fees
An improved fee model for blockchain cryptocurrencies.

Document v0.8.0

Revision 20190105

Jordan Mack
jordan.mack@brilliantnotion.com

www.brilliantnotion.com

Abstract
Deterministic Transaction Fees (DTF) is a fee model for blockchain based cryptocurrencies
designed to alleviate many of the inherent design limitations present in the fee model which was
pioneered by Bitcoin, and currently used by most cryptocurrencies today.

The Bitcoin model limits the size of the blocks and relies on market based competition to
prioritize transactions for inclusion in the block. This results in an unpredictable fee schedule,
and unpredictable confirmation time. This new model introduces a more reliable way of creating
fees that remain market based, but are more predictable in both fee schedule and confirmation
time.

mailto:jordan.mack@brilliantnotion.com
http://www.brilliantnotion.com/

Table of Contents

Abstract

Table of Contents

Motivation

Assumptions

Goals

Specification
Summary
Timeframes
Buckets
Fee Schedule
Timeframe Locking

Considerations
Simultaneous Transaction Broadcast and Block Discovery
Inclusion of Underpaid Transactions

Motivation
The fee model which was pioneered by Bitcoin, and currently used by most cryptocurrencies
today, is not practical in actual use. There exists only two true states for the block in relation to
fees: Not full and full.

When block space is consistently under utilized, there is no incentive to pay any fee higher than
the absolute minimum since the mempool will always be fully processed in the next block. The
minimum fee is 0 on many chains.

When block space is over utilized, fees grow erratically and exponentially at users compete for
the available space. The end result is devastating to the user experience. Fees may far exceed
the amount of the transaction, rendering it completely useless for small payments. Confirmation
times become largely unpredictable unless the user is among the highest fees paid.

Differences in fee estimators are problematic since an estimation could end up being too low or
too high. The user could end up accidentally paying far too much for a transaction, or far too
low, resulting in transactions that may not process for days, weeks, or ever.

Artificial block size limits are not sufficient for real world usage, and are damaging to the
overall ecosystem. The end motivation of paying higher fees is always to improve
confirmation time. Therefore, the fee model should be based on confirmation time
directly, not on block size.

Assumptions
The future of blockchains is to incorporate some form of partitioning, sharding, or pruning. This
will reduce the disk space requirements per node to a level that is negligible. Therefore, disk
space utilization does not need to be a consideration for this model.

Goals
● Fees should never be set to specific fixed amounts. The fees must remain market based.
● The fee schedule must be clear. Users should not have to estimate. Fee amounts should

be exact and deterministic.
● Confirmation time should be predictable. Users should not have to guess on when or if

their transaction will process.
● Transactions which have paid the proper fees should never go into a limbo state when

confirmation time is completely unpredictable.

Specification

Summary
The fee schedule for the next block is determined by analyzing the transactions of recently
confirmed blocks. The fees paid (per byte) in the confirmed block are analyzed, and the fee
schedule is determined based on the averages found.

The calculated fee schedule will include exact rates which correspond to priority buckets. The
top rate bucket will correspond to the next block (+1). The second highest rate bucket will
correspond with the block after next (+2), and so on.

When the proper fee is paid by the user, their transaction is scheduled for inclusion into the
blockchain in accordance with the bucket they paid for. If the fee paid is too low, the transaction
is rejected by the mempool.

Timeframes
Absolute time does not exist in a blockchain. A timeframe is defined as a range of blocks that is
greater or equal to one. For the examples in this document, a timeframe will typically be defined
as one block. However, this can optionally be increased in the implementation to reduce pricing
volatility.

Timeframes are used for the purpose of determining subsequent fee schedules. The active fee
schedule is always on a previous timeframe. In the diagram below, the current timeframe is
“Timeframe n+0”. The fee schedule for inclusion in the next block is “Fee Schedule n+1”, and
this is determined by the previous timeframe.

Buckets
A bucket is a grouping used to schedule pending transactions for inclusion in future blocks. A
set of buckets exists for each timeframe, and each bucket represents a priority for inclusion. The
highest priority bucket will be included in the next block (n+1). The second highest priority
bucket will be included in the block after the next (n+2), and so on.

In the diagram below, buckets are aligned with the blocks the correspond to. The top priority
bucket is “Bucket n+1”. This bucket would have the highest fee according to the fee schedule.
Transactions that pay the required fee to be included in this bucket will be included in the next
block “Block n+1”. If the user does not require the next block, then they can select a lower fee
bucket that will be scheduled for inclusion in a later block.

The above example has three buckets, but a more realistic implementation would have a
minimum of 6 buckets or more. Each bucket has a corresponding price for inclusion based on
the fee schedule. If a transaction fails to pay the minimum fee for the lowest priority bucket, then
it is rejected by the mempool.

Fee Schedule
The current fee schedule is based on the previous timeframe, which is, in turn, based on the
blocks which have already been included in the blockchain. This means that fees are always
exact and deterministic since they are based on the history of the blockchain.

The basis for the fee schedule is the average fee paid per byte in the previous timeframe. This
ensures that the fees always adjust based on market conditions. The calculation of fees should

be modified to fit the specifics of the implementation, but in all cases, higher priority buckets
should have a higher rate than lower priority tiers.

In the example below, the price per bucket is calculated using the function ​ceil​(a * f ^ d)
for buckets with a priority higher or equal to the average, and ​ceil​(a / f ^ d)​ for buckets
with a priority lower than average.

This assumes 9 bucket levels, and a timeframe average fee of 5 sats/byte, and a constant
growth factor of 1.5. The actual pricing function may vary depending on the actual
implementation.

Timeframe Locking
When a transaction is broadcasted it must include the current block hash. If a node receives a
transaction broadcast that is timeframe locked with a block that does not match the current
block, it should be rejected from the mempool. This ensures that transactions are locked to the
current timeframe of the chain, and that stale transactions are rejected.

Considerations

Simultaneous Transaction Broadcast and Block Discovery
If a transaction is broadcast to the network at the same moment that a new block is discovered,
it may be rejected by part or all of the network. Transaction broadcast propagation is a
time-sensitive action, and therefore detection of a potential issue can be automatically flagged
by the client if the two events occur in a short window. The client can automatically assess the
situation by querying the mempool of connected nodes. If there is a high possibility the
transaction was affected, it can be rectified by submitting a replace by fee transaction utilizing
the same UTXO inputs.

Inclusion of Underpaid Transactions
Without a block size restriction, a non-cooperative miner could attempt to include all pending
transactions, regardless of what fee was paid and bucket they should have been included into.
This is avoided by using timeframe locking. If the transaction is locked to the incorrect
timeframe, attempting to it in the wrong block would result in an invalid block which would be
rejected by the consensus of the network.

